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ABSTRACT

The idealized age tracer is commonly used to diagnose transport in ocean models and to help interpret ocean
measurements. In most studies only the steady-state distribution, the result of many centuries of model integration,
has been presented and analyzed. However, in principle the transient solution provides more information about
the transport. Here it is shown that this information can be readily interpreted in terms of the ventilation histories
of water masses. A simple relationship is derived, valid for stationary transport, between the transient evolution,
tid(r, t), of the idealized age tracer and the ‘‘age spectrum,’’ G (r, t), the distribution of times t since a water
mass was last ventilated. Namely, G (r, t) 5 2]tttid(r, t). Implications of the relationship are discussed, and the
relationship is illustrated with an idealized model.

1. Introduction

Natural and anthropogenic tracers have been used to
estimate the ventilation history of ocean water masses.
The ‘‘ages’’ constructed from tracers generally reveal
different and complementary information about the ven-
tilation. Recent work has made explicit the fact that a
water mass must be characterized by a distribution of
times since since it last made surface contact, rather
than a single ‘‘age’’ (Beining and Roether 1996; Delhez
et al. 1999; Khatiwala et al. 2001; Haine and Hall 2002),
and observable ages represent differently weighted av-
erages over this distribution (Haine and Hall 2002).
Many of these ideas build on previous work intepreting
stratospheric tracers (Hall and Plumb 1994) and recent
more general work on transport timescales in geophys-
ical flows (Holzer and Hall 2000; Beckers et al. 2001;
Deleersnijder et al. 2001a).

One age that has meaning independent of any partic-
ular ocean tracer is given by the idealized age tracer
tid(r, t) (e.g., England 1995), which we refer to simply
as the ‘‘ideal age.’’ It is defined by

]t id 1 L (t ) 5 Q(t), (1)id]t
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where L is a general linear transport operator that may
include, for example, advection and diffusion, and Q(t)
is the unit step function [Q(t) 5 1 for t $ 0 and Q(t)
5 0 for t , 0]. The boundary condition (BC) is tid(S,
t) 5 0, where S is the ocean surface, and the initial
condition is tid(r, 0) 5 0. In this note we restrict atten-
tion to the case of stationary transport (i.e., the coef-
ficients of L are assumed to be time-independent). Some
comments concerning the impact of nonstationarity on
our analysis are made in the final section.

In the limit of long elapsed time compared to time-
scales of the circulation (‘‘steady state’’), tid is a natural
diagnostic. The irreducible fluid elements that compose
the water mass have had their ‘‘clocks’’ increased one
time unit per unit time by the source [rhs of (1)] since
last boundary contact, where their clocks were reset to
zero. Thus, tid averaged over the elements of the water
mass [the ‘‘observable’’ quantity, were there such a trac-
er obeying (1)] is the ‘‘ideal age,’’ the average time
since the water mass last made surface contact. Due to
mixing, the clock times of the individual elements com-
prising the water mass may vary widely.

The ideal age is a popular and useful diagnostic in
ocean models, but generally only the steady-state so-
lution is reported and analyzed. However, the transient
approach to steady state contains the transport infor-
mation provided by the steady-state solution and in prin-
ciple much more. This transient is a useful diagnostic
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if it can be interpreted physically in a straightforward
manner. Recently, mathematical and physical frame-
works have been developed in which passive tracer
fields can be expressed in terms of transient evolutions
that have interpretations as transit time or age distri-
butions (Holzer and Hall 2000; Beckers et al. 2001;
Deleersnijder et al. 2001a). In this note we present an
example of this connection between a tracer field and
an age-related transient that should be of practical in-
terest to ocean modelers. Namely, we derive a simple
and direct relationship between tid and the distribution
of transit times since a water mass made last surface
contact. This distribution has been termed the ‘‘age
spectrum’’ in stratosphere applications (Kida 1983; Hall
and Plumb 1994), and we use that nomenclature here.

2. Idealized age tracer and age spectrum

Our goal is to derive a relationship between ideal age
and the age spectrum, G. Because the relationship of G
to Green’s functions has been developed by Holzer and
Hall (2000), a natural place to start is by expressing tid

in terms of Green’s functions. Given the unit uniform
source of (1) one has

t

3t (r, t) 5 dt9 d r9r (r9)G(r, t, r9, t9), (2)id E E
0 D

where D is the physical domain (i.e., the ocean), r the
fluid density, and G(r, t, r9, t9) the Green’s function, the
response at (r, t) to a point source at (r9, t9). The function
G obeys a BC compatible with tid; namely, G(rS, t, r9,
t9) 5 0 for rS on S. For stationary transport G depends
only on elapsed time j 5 t 2 t9, and (2) can be rewritten

t

3t (r, t) 5 dj d r9r (r9)G(r, r9, j). (3)id E E
0 D

Expression (3) is the response at a location r to a
spatially distributed source. We replace this with the
response integrated over the domain to a point source
at r by exploiting the reciprocity condition for Green’s
functions: G(r, r9, j) 5 G†(r9, r, 2j), where G† is the
Green’s function for the adjoint flow (e.g., Morse and
Feshbach 1953). The reciprocity condition says that the
response at r to a point source at r9 in the time-forward
flow is the same as the response at r9 to a source at r
in the time-reversed adjoint flow (TRAF). Thus,

t

3 †t (r, t) 5 dj d r9r (r9)G (r9, r, 2j)id E E
0 D

t

†5 djM (r, 2j), (4)E
0

where M † [ #D d3rrG† is the total tracer mass in D at
elapsed time 2j ‘‘after’’ the unit tracer release from r
in the TRAF.

We now consider the budget of M †(r, 2j) as j in-

creases (2j decreases). Initially in the TRAF the unit
tracer mass is localized near the release point r, and M †

5 1. Subsequently, tracer begins to make contact with
the boundary where it is lost, and M † declines from
unity. The rate of change ]jM †(r, 2j) (subscripts in-
dicate differentiation) must equal the flux of tracer mass
out through the boundary. That is,

]
†M (r, 2j)

]j

2 †5 d r r (r )k (r )n · = G (r , r, 2j), (5)E S S S r SS

S

where n is the unit normal vector on S directed into D,
k is the diffusivity, and the gradient is evaluated on S.
[Note that the flux into S is purely diffusive; G†(rS, r,
2j) 5 0 by the boundary condition, so that the advec-
tive flux vG† vanishes.] As discussed by Holzer and
Hall (2000), a general Green’s function solution for a
tracer with arbitrary sources and boundary conditions
reveals that the rhs of (5) is the kernel in a convolution
with the tracer’s time-dependent BC on S. The rhs of
(5) acts as a propagator, G (r, j), of BCs on S in the
time-forward flow. Thus, (5) can be written ]jM †(r, 2j)
5 G (r, j), or

j

†M (r, 2j) 5 1 2 dj9G (r, j9). (6)E
0

Therefore, from (4), the ideal age is
t j

t (r, t) 5 t 2 dj dj9G (r, j9) (7)id E E
0 0

or, upon rearranging,
2]

G (r, t) 5 2 t (r, t). (8)id2]t

The final step in out development is to note that, in
addition to being a BC propagator, G has the interpre-
tation as the distribution of transit times j since fluid at
r last made contact with S (Hall and Plumb 1994; Holzer
and Hall 2000). Indeed, it was the connection of G to
M † that led Holzer and Hall (2000) to this interpretation.
Physically, M †(r, 2j) is the fraction of tracer released
from r in the TRAF that has not made boundary contact
in the elapsed time 2j. Therefore, dj ]jM †(r, 2j) is the
fraction that makes first boundary contact in the elapsed
time interval 2j → 2j 2 dj; that is, ]j M †, which
equals G, has the interpretation as the distribution of
times to first boundary contact (the first arrival time
pdf ) in the time-reversed adjoint flow. This is equivalent
to the distribution of times since last boundary contact
in the time-forward flow.

Expression (8), together with the transit time distri-
bution interpretation, is the key result of this work. The
transient solution to the ideal age equation and the age
spectrum are related in a simple fashion, a result not
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previously noted, but which follows naturally from the
more general Green’s function frameworks of Holzer
and Hall (2000) and Beckers et al. (2001). The transient
solution of the ideal age contains valuable transport in-
formation—far more, in fact, than the steady-state ideal
age alone—and this information is readily interpretable
in terms of the ventilation history of the water mass.
Relationship (8) can be physically understood in a
straightforward fashion. At early enough times the fluid
at an interior point r has not yet felt the influence of
the boundary, so that the unit source [rhs of Eq. (1)]
causes a linear increase in time of tid. From (8), the
boundary propagator G is zero at this time, precisely
what is meant by not yet having felt the influence of
the boundary. Once the zero BC starts to make itself
felt, then tid starts to increase more slowly than linear.
Eventually, when tid reaches steady state (]/]t 5 0), the
boundary has made its full influence felt, and there is
no further boundary information to propagate, whence
G returns to zero. Note that relationship (8) implies that
the curvature of ideal age is always negative.

3. Ideal age convergence

Khatiwala et al. (2001) simulated in an ocean GCM
the ideal age and the ‘‘cumulative mean age,’’ defined
as G(r, t) [ djjG (r, j), where G(r, t) is the meant#0

transit time since last boundary contact of the tracer that
has accumulated at r by time t. As t → ` all fluid
elements of the water mass have made boundary contact
at some past time, and G becomes the mean transit time
since the entire water mass was last at the boundary
(the ‘‘mean age’’), equal to the ideal age. Khatiwala et
al. (2001) made the numerical observation that although
tid and G tend to the same value, tid converges more
rapidly. This is readily verified from the general analysis
here. Taking the partial first moment ( djj) of (8) onet#0

finds

]
G(r, t) 5 t (r, t) 2 t t (r, t). (9)id id]t

The ideal age increases monotonically from zero, ap-
proaching its equilibrium value asymptotically so that
the second term on the rhs of (9) is positive. At long
times ]/]t ; 0 and G ; tid. However, at intermediate
times G , tid. Therefore, G converges more slowly than
tid . This has practical consequences for diagnostics of
numerical models. If it is the sole intention of a modeler
to obtain the ideal age (mean age) then the approach of
Eq. (1) is more efficient. (However, it should be rec-
ognized that the full age spectrum contains far more
information than just its mean.)

4. Illustration

The expressions relating tid, G, and G derived above
are true for any stationary transport operator L, whether
that of the time-averaged observed circulation, a 3D

numerical model, or an idealized analytic model. It is
instructive, however, to illustrate with an example. We
choose 1D advection–diffusion with constant coeffi-
cients because of its familiarity and common usage.

The evolution equation for ideal age is
2]t ]t ] tid id id1 u 2 k 5 Q(t), (10)

2]t ]x ]x

where u is the velocity, k the diffusivity, and Q(t) the
unit step function. The BCs are tid(0, t) 5 0 and that
tid(x, t) should not grow exponentially with x, and the
initial condition is tid(r, 0) 5 0. One method of solution
is to take the Laplace transform, consider the sum of
homogeneous and particular solutions, and use the BCs
to constrain general constants. This yields the Laplace
space solution

21 1 ux s u
t̃ 5 2 exp 2 x 1 , (11)id 2 2 21 2!s s 2k k 4k

where id is the Laplace transform of tid and s is thet̃
transform variable. We were not able to obtain a closed-
form solution for the inverse transform. An integral ex-
pression of the solution is

tx (t 2 t9) 22(x2ut9) /4kt9t 5 t 2 e dt9, (12)id E 3/2t9Ï4pk 0

similar to solutions for closely related problems ob-
tained by Deleersnijder et al. (2001b).

By comparison, the evolution equation for the age
spectrum is

2]G ]G ] G
1 u 2 k 5 0 (13)

2]t ]x ]x

with the BCs G (0, t) 5 d(t) and no exponential growth
with x. The solution can be found in several studies
and is

x 22(x2ut) /4ktG (x, t) 5 e . (14)
3Ï4pkt

To obtain the relationship with tid we also note that the
Laplace space solution to (13) is

2ux s u
G̃ (x, t) 5 exp 2 x 1 . (15)

21 2!2k k 4k

Inspection of (11) and (15) reveals
2G̃(x, s) 5 1 2 s t̃ (x, s).id (16)

Using relationships between the derivatives of trans-
forms and their inverses (e.g., Abramowitz and Stegun
1972), one finds that the Laplace transform of equality
(16) is

2]
G (x, t) 5 2 t (x, t). (17)id2]t

General relationship (8) is verified. [Relationship (17)
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FIG. 1. (a) Age spectrum for the 1D advection–diffusion model with constant coefficients.
The spatial evaluation point is x 5 k/u. The time axis is in units of k/u2, and the mean age is
indicated by the symbol. (b) The transient ideal age (solid) and cumulative mean age (dash) for
this model, also in units of k/u2.

could also be obtained by direct differentiation of ex-
pression (12).]

The age spectrum for this 1D model is plotted in Fig.
1a, with the mean age indicated by the symbol. Note
that the mean age for this idealized model is simply x/
u. Despite its simplicity, the age spectrum for this model
is qualitatively similar to the spectrum computed in the
Atlantic sector GCM of Khatiwala et al. (2001). Figure
1b shows tid , obtained from relationship (8), and G. Note
that tid and G both converge to the mean age, but tid

does so more rapidly.

5. Discussion and summary

We have derived a simple relationship, valid for any
type of stationary transport, between the transient ideal
age tid of ocean water masses and the age spectrum, G,
the distribution of times since the water mass was last
ventilated; namely, G (r, t) 5 2]tttid(r, t). This encom-
passes, but is more general than, the steady-state rela-
tionship that the ideal age equals the mean age (the mean
over the age spectrum) (e.g., Boering et al. 1996; Kha-
tiwala et al. 2001). The relationship follows naturally
from the general frameworks developed by Holzer and
Hall (2000), Beckers et al. (2001), and Deleersnijder et
al. (2001a) that provide connections between various
tracers using the machinary of Green’s functions. The
relationship derived here implies that the transient ideal
age has diagnostic value—much more, in fact, than the
equilibrium ideal age itself. No single timescale can

completely summarize both the bulk advection and mix-
ing that connect the surface to subsurface regions. By
contrast, a tracer’s transient solution displays explicitly
its sensitivity to the full distribution of timescales,
though this information may be convolved with the trac-
er’s particular boundary condition and source distribu-
tion. Green’s functions, exploited here, are powerful
tools to relate tracers to each other and to extract tracer-
independent transport information.

The relationships between tid, G, and G concern trans-
port diagnostics that are not generally directly observ-
able, although they may possibly be inferred from com-
binations of tracers. For ocean model studies, however,
these relationships have direct practical utility. First, if
one’s goal were simply to obtain a model’s equilibrium
mean age (ideal age) distribution, the ideal age approach
is better, since it converges faster. However, it must be
recognized that no single timescale can fully charac-
terize the transport, and the age spectrum contains more
information than just its mean. Second, to the extent
that transport is stationary, it is redundant to simulate
both the ideal age and some measure of the boundary
propagator. For example, one can find in the ocean mod-
eling literature studies in which both the ideal age and
the response to a step function surface boundary con-
dition are simulated (e.g., England 1995). According to
the analysis here this is equivalent to simulating both t
2 dj dj9G (r, j9) and djG(r, j). One couldt j t# # #0 0 0

simulate G alone and afterwards reconstruct the other
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diagnostics. In fact, it may be of interest to modelers
who have archived transient data from ideal age sim-
ulations to compute G, thereby providing additional in-
sight to transport in their models.

Finally, we note that the relationships derived here
are strictly valid only for stationary transport. This is
clear from relationship (8). Here G is always positive,
but if there are temporal cycles (e.g., seasonal) in the
circulation than tid will exhibit ‘‘wiggles,’’ and its first
and second time derivatives will at times be negative.
Thus, relationship (8) cannot hold. Nonetheless, if the
circulation cycles have periods either much longer than
or much shorter than the mean age, then (8) may still
hold approximately. If the cycle periods are very long,
then the circulation appears approximately stationary
over the timescales of interest. If the cycle periods are
very short (e.g., seasonal), then suitable filtering will
result in an approximate relationship.
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